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Synopsis 

The multimethod procedure for characterization of branched polydisperse polymers, including 
gel permeation chromatography, solution viscometry, melt viscometry, and differential scanning 
calorimetry, is described. An equation relating the average branching degree Ex and the average 
number of branch points &x has been derived and compared with the theoretical Zimm-Stockmayer 
equation. I t  has been found that both equations can be consistent for theta solvent and for the 
branching degree exponent b = 1.5. Experimental data are given for trifunctionally branched bis- 
phenol A polycarbonate. 

INTRODUCTION 

Since the theoretical work of Zimm and Stockmayer,l the influence of long 
chain branching (LCB) on polymer properties has been considered by many 
authors, both from theoretical and experimental points of view (for references 
see reviews and some recent works2&). Experimental characteristics of branched 
polymer should contain the determination of molecular weight ( M )  or M averages 
(Mx 1, molecular weight distribution (MWD), and parameters of branched 
structure such as the type of branching (star, comb, or random), the branch point 
(or branch unit) functionality f ,  the number of branch points per molecule n b ,  
the distribution of branch points, etc. Commonly used branching degrees 

G = [qlbr/[qIlin (1) 

or 

where [q] is the intrinsic viscosity, 7 is the mean square end-to-end distance of 
macromolecule, and subscripts br and lin denote branched and linear polymers, 
respectively, give only a very general indication of the amount of branched 
species. The two branching degrees G and g are related by 

G = g b  (3) 

where the branching degree exponent b depends above all on the type of 
branching and varies from 0.5 to 1.5 (cf. Refs. 2 and 3). Some characteristics, 
e.g., type of branching and functionality f ,  can be deduced from conditions of 
branching reactions. 

Theoretical equations, relating the branching degree g and the number of 
branch points n b ,  were derived by Zimm and Stockmayerl for randomly branched 
monodisperse and polydisperse polymers. Thus for polydisperse polymers and 
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f = 3  

and for f = 4 

where gf,w is the weight average value of g for the branch point functionality f 
and n b w  is the weight average number of branch points per molecule. Thus nbw 
values should be known for experimental verification of eqs. (4) and ( 5 ) .  

Recently, the following general equation for polymer properties dependent 
on their molecular characteristics was proposed7: 

n 

i = l  
P = A p  n UP" 

where P is the polymer property, 7r is the product symbol, ui is the ith variable 
of molecular characteristics, such as M and measures of MWD and LCB, and 
Ap and aip are constants. Equation (1) offers a method for experimental char- 
acterization of branched polydisperse polymers. For example, the values of 
number average number of branch points nbn can be determined from glass 
transition temperature measurements.* 

In the present work (presented in part a t  the Annual Meeting of Polish 
Chemical Society, Lublin, September 22-25,1982) the multimethod procedure, 
including gel permeation chromatography (GPC), solution viscometry (VIS), 
melt viscometry, and differential scanning calorimetry (DSC), is described. The 
results are compared with the theoretical Zimm-Stockmayer equation. Ran- 
domly branched bisphenol A polycarbonate (PC) with trifunctional branch points 
is used as an example. 

MULTIMETHOD PROCEDURE 

The multimethod procedure is based on the general equation, (6), which is 
applied for selected polymer properties dependent on M ,  MWD, and LCB. 
Several samples of branched polydisperse polymer are characterized by GPC 
and VIS methods. Thus the averages of M ,  Z n ,  Elw, M,,GPC and Z,,VIS are 
obtained. The polydispersity degree 

q = MwlMn (7) 
and the branching degree 

g, = Z u , ~ ~ ~ l K , ~ ~ ~  
are used as measures of MWD and LCB, re~pectively.~-l~ The branching degree 
g, is related to the other branching degrees by the following equation7J0: 

G (9) 

[7] = KMas (10) 

where a, is the exponent of the Mark-Houwink equation 
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The GPC system should be properly calibrated in order to obtain g, = 1 for linear 
and g, > 1 for branched polymers. 

Polymer properties, measured and then treated according to eq. (6) to obtain 
constants Ap and aip by the least-squares four-variable regression method, are 
specified below. 

Intrinsic viscosity [q] for checking the reliability of molecular character- 1. 
istics7,9-11: 

[q] = A,apqawxg:sb (11) 

where indices s, x, p ,  and b denote the intrinsic viscosity as the polymer solution 
property, the type of M average, polydispersity, and branching, respectively. 
The branching degree G can be used in eq. (11) instead of g,, and then 

[q] = A,RsqQa.p&asb ( l la )  

where the branching exponent a,b = 1 for G. 
If GPC and VIS measurements of M ,  MWD, and LCB are correct, the con- 

stants of the Mark-Houwink equation K = A, and a, for a given polymer-solvent 
system should be obtained by the least-squares method. Moreover, the following 
conditions should be satisfied7: 

aspn > 0 (12a) 

aspu  = 0 

aspw 4 0 
for the polydispersity exponent aspr,  and 

or 

asb  = 1 for G 

Then the other polymer properties can be measured. 
2. Zero shear rate melt’viscosity 70 as the melt property7J2: 

qo = ArnR;mqampxGa,b (14) 
where subscript m denotes the melt property and G is used as the measure of 
LCB. Then the exponent b of eq. (3) can be obtained from eq. (14) as the fol- 
lowing ratio7: 

b = amlamb (15) 

Glass transition temperature Tg and ATg = Tg0,- - Tgo, where Tgm is the 
value of T, at M = Q), and the subscript 0 denotes Tg values at zero heating rate, 
treated by the following general equation: 

AT, = A , ( Z ,  + BqatPxg~tb)atqatpxg~tb (16) 

where the subscript t denotes AT, as the polymer property, B is the correction 
for M ,  and at = - l . 7 9 8  Thus, the number average number of chain ends per 
macromolecule Gn can be calculated? 

Gn = 2 g y  (17) 

3. 
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Hence, the other LCB parameters are found, i.e., the number average number 
of branch points per molecule &n, the average M ,  of segments between branch 
points Mn,seg, and the average number of branch points per average M (the 
branching frequency) A,, according to the following relations: 

(18) 
- 
nbn f  = ( z x  - 2)/(f - 2) 

I Mx,seg = x x / p  (w, - 2) + 1 
- 2  

Ax = E ~ x / M x  (20) 

(18a) 

(194 

(1%) 

(19b) 

Thus, for f = 3 we haves 
- 

nbn,3 = w, - 2 

mn,seg = M n / ( z E b n , 3  + 1) 

and for f = 4 
- 
nbn,4 = (Gn/2) - 1 

Mn,seg = Mn/(3nbn, ,  + 1) 

Therefore, combining eqs. (3), (9), (17), and (18), we obtain 

Zf,, = [(%f - l ) Z 6 n , f +  I l k  (21) 

where gf,n is the number average value of g for the branch points functionality 
f ,  and 

k = %,/bat6 (22) 

and b = amlamb  according to eq. (15). Hence, for f = 3 we have 

g3 .n  = (l/2nbn,3 + 
and for f = 4 

g4,n = (nbn , l  + (23b) 

Combining eqs. (18) and (21), we obtain 

gn = (24) 
independently of branch points functionality f ,  and introducing eq. (17) into eq. 
(241, we have 

gn = g - a J b  (25) 
Therefore, the essential parameter for determination of branching degree g is 
the number of chain ends per molecule W, irrespective of branch points func- 
tionality f. Values of Gn are obtained experimentally from Tg measurements,8 
and eqs.(21)-(23) can be compared with the theoretical Zimm-Stockmayer 
equations (4) and (5). 

EXPERIMENTAL 

Samples of randomly branched polydisperse bisphenol A polycarbonate (PC) 
were laboratory prepared by interfacial polycondensation, using 2,4-bis(p - 
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hydroxycumy1)phenol (BPX) and phloroglucinol (THB) as trifunctional 
branching agents.1° Commercial PC samples of Lexan (General Electric Go.), 
Makrolon (Bayer AG), and Bistan (Zachem, Poland), some of them supposed 
to be branched, were used for comparison. 

PC samples were characterized by GPC and VIS methods7J0 and their [q], qo, 
and Tgo were measured.8J0J2 The following constants were found: a, = 
0.82?*9-11 b = 1.31,12 and at,, = 0.51.8 Hence, the exponent k [eq. (22)] is equal 
to -1.23. 

RESULTS AND DISCUSSION 

Results of molecular characteristics of PC samples are given in Table I. The 
results were checked by eq. ( l la) ,  using the measured values of [q], not included 
in Table I. The following coefficients were obtained: A, = 1.31 X cm3/g, 
a, = 0.812, aspn = 0.756, aspw = -0.037, and a,b = 1.05 for G. The values of A, 
and a, agree with the Mark-Houwink constants K = 1.20 X cm3/g and a, 
= 0.820 for PC in CHC13.7J0 The conditions of reliability, eqs. (12a), (12c), and 
(13b), are also satisfied. Nevertheless, the values of G were corrected7; however, 
only small differences between uncorrected and corrected values are observed 
for higher branch contents (i.e., for lower G values) (see Table I). Then the 
values of gn and ?ibn for f = 3 (the subscript 3 is omitted) were calculated (see 
Table I) and statistically treated according to eq. (23a). Hence, k = -1.30 with 
correlation coefficient r2 = 0.997 was obtained. This value of k is by 5.7% lower 
than that calculated from eq. (22). Hence b = 1.24. The calculated curve g n  
= f(?ibn) and the experimental points are shown in Figure 1. Thus, the experi- 
mental points for all samples, irrespective of the method of preparation and the 
type of branching agent, belong to the same curve. 

The experimental curve for PC is also compared with the theoretical one of 
Zimm and Stockmayer given by eq. (4) (see Fig. 1). The difference is evident, 
and we have found it necessary to consider some simple models in order to 
comment on such a discrepancy. 

Therefore, hypothetical PC samples composed of three to six fractions of 
branched macromolecules with a given number of branch points nbi were used 
for calculations of branching parameters. Values of ?ibn and ?ibw were obtained 
from 

(264 
- 
nbn  = C x n i n b i  

where nbi is the number of branch points per ith molecule, xni  and x w i  are the 
number and weight fractions, respectively, of the ith molecules. Values of gi 
for the ith fractions were calculated from the number of chain ends G, using eq. 
(24) with k = -1.30, and then the number and weight averages of g were obtained 
from 

and 
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Fig. 1. Average branching degree vs. average number of branch points fibr. Laboratory PC 
samples: (0) BPX-branched; (0 )  THB-branched. Commercial PC samples: (0) Bistan; (X) Lexan; 
(+) Makrolon. (--) Experimental data on PC in chloroform at 25OC, g,, = f(Eb,,);  (- - -) the 
theoretical Zimm-Stockmayer equation, gW = f ( f i b w ) ,  for f = 3. 

The results of preliminary calculations are shown in Table I1 and in Figure 2. 
It is evident that the points for gn = f ( n b n )  and for gw = f ( & , )  are placed along 
the same common curve. It means that both relationships for En and for gw 
should be of the same mathematical form and can be written as gx = f(fT;bx). 
Therefore, according to eq. (21), we obtain the following generalized form of & 
- Zbx relationship 

(28) g f , x  = [('/2f - l ) n b x , f  + 
Hence, for f = 3 we have 

g3,x = ('/2Zbx,3 + (29) 

Then the following regression equation was considered: 

= c(l/2Ebx + (30) 

where the constant C should be equal to unity. The results of calculations for 
both g,, and gw functions are: C = 1.07 and k = -1.30 with r2 = 0.972. Samples 
with a quasi-log-normal MWD (see Table 11) are even better correlated: C = 
1.04 and k = -1.27 with r2 = 0.995 for bothg, and gw functions. Curves of dif- 
ferent k values can, however, be distinguished (see Fig. 2). Then it can be sug- 
gested that the theoretical Zimm-Stockmayer relation [eq. (4)] is approximated 
by eq. (29) with k between -0.45 and -0.40 (see Fig. 2). I t  corresponds to a, = 
0.5 (theta solvent), b = 1.5 (the theoretical value of Flory; cf. Refs. 2 and 3), and 
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Fig. 2. Average branching degree Ex vs. average number of branch points Eb, from model calcu- 
lations: (0) En = (2s/2Ik with k = -1.30; (a,@) En = Zx,igi; (!&pa) gw = Zx,igi. Pointed in and 
crossed data are for increasing and quasi-log-normal molecular weight distributions, respectively. 

N 0.8. In fact, the unperturbed macromolecule coil (i.e., theta conditions) 
and the statistics of Flory (which gives G = g1.5 @t,J@1in, where @ is the universal 
constant) were assumed by Zimm and St0ckmayer.l Therefore, the influence 
of solvent is responsible for the observed difference between eqs. (4) and (23a) 
in Figure 1. 

For distinguishing between gn and gw functions given by eq. (28), the ratios 
gw/gn  or f i b w / f i b n  should be known. It may be expected that the both ratios de- 
pend not only on the MWD, i.e., x,i = f ( M i ) ,  but also on the branch points dis- 
tribution, i.e., xwi = f ( n b i ) ,  and above all on the relation n b i  = f ( M i ) .  Thus the 
ratios gw/gn and fib,/fibn are equal to unity for monodisperse branch points, i.e., 
for n b i  = const, or they are near unity for samples with branched molecules of 
medium M .  If the branch points are connected with molecules of high M ,  the 
ratio gw/g,, is lower, and the ratio n b w l f i b n  is higher than unity; and vice versa, 
gW/& is higher and fib,/@,, is lower than unity for branched low-M species (Table 
11). These results, based on simple model calculations, seem to be reasonable; 
they should, however, be confirmed by more complex model calculations andlor 
by other experimental data, especially on weight average branching parameters. 
Fortunately, experimental data on randomly branched polystyrene (PSI have 
quite recently been reported.13 We have treated these data according to the 
multimethod procedure, and the results consistent with those from simple model 
calculations have been obtained (see the Appendix). 

Similarly, the weight average branching parameters can be calculated for PC 
samples, using equations derived in the Appendix (see Table 111). Thus, the 
ratio &,/fib, higher than unity and the ratio g,&, lower than unity are obtained, 
i.e., the relation of n b i  vs. Mi is an increasing function for all PC samples. 

The branching frequencies A, and A, are shown in Table I11 and in Figure 3, 
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TABLE I11 
Weight Average branching Parameters of PC Samples 

EWE* A, x 10-6c 
- 

Sample a,, x 10-3 ?-&,,a n b w h b n  EWb 

DE-2 11.1 1.43 14.3 0.50 0.53 33.6 
DE-3 8.8 1.87 8.5 0.42 0.48 44.3 
DE-4 9.3 2.07 10.9 0.40 0.45 43.9 
DE-5 12.0 1.20 17.1 0.54 0.56 29.6 
DE-7 5.5 5.39 5.3 0.18 0.25 84.6 
DE-8 10.3 2.40 10.0 0.36 0.42 40.5 
DE- 12 10.6 0.97 8.1 0.60 0.65 30.4 
DE-13 10.6 2.00 7.1 0.41 0.49 38.0 
DE-15 21.0 0.85 9.4 0.63 0.66 14.7 
DE-17 18.4 0.90 11.3 0.62 0.65 17.3 
DE-M 17.7 0.74 12.3 0.66 0.69 17.0 
Bistan 

AW 3/76 6.2 2.98 15.7 0.31 0.35 68.2 
AE 23/76 21.9 0.78 9.8 0.65 0.68 14.1 
AF 21.6 1.28 8.0 0.53 0.58 16.6 
M-10 10.8 1.07 17.8 0.57 0.59 31.6 

Lexan 151 8.2 2.18 21.8 0.38 0.40 50.9 
Makrofol E 9.6 2.14 10.2 0.39 0.44 42.4 

a From eq. (36), equivalent results are obtained from eq. (37). 
From eq. (29) with k = -1.30. 
From eq. (30). 

respectively. Both relations given by eqs. (38) and (39) in the Appendix are 
found to be satisfied. Neglecting a different origin of branched PC samples, A, 
= 5 X and ~2~ = 2.50 are obtained from eq. (39) with correlation coefficient 
r2 = 0.77. The exponent ~2~ calculated from eqs. (38) and (41) is equal to 2.78. 
The results for BPX-branched laboratory and commercial PC samples are better 
correlated: A,  = 3 X and u2, = 2.90 with correlation coefficient r2 = 0.87 
are calculated from eq. (39) and u2, = 2.93 from eqs. (38) and (41). 

.- . 
2 4 6 

9 

Fig. 3. Branching frequency X, vs. polydispersity degree q. Laboratory PC samples: (0) 
BPX-branched; (0 )  THB-branched. Commercial PC samples: (0) Bistan; (X) Lexan; (+) Mak- 
rolon. (-) All PC samples with correlation coefficient r2 = 0.77; (- - -) BPX-branched PC samples 
with correlation coefficient r2 = 0.87. 
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CONCLUSIONS 

The multimethod procedure, based on GPC, VIS, melt viscometry, and DSC 
methods, enables the improved characterization of branched polydisperse 
polymers. It is suggested that the relationship, derived for& = f ( 6 b n )  [eq. (2111 
and checked for trifunctionally branched PC, is valid also for gw = f ( 6 b w ) ,  and 
can be generalized as Ex = f (&) [eq. (2811. 

Comparison of results on PC and the theoretical equation for f = 3 suggests 
that the influence of solvents on the measurement of the branching degree g 
should be taken into account by means of eq. (28). Thus, eq. (28) and the the- 
oretical Zimm-Stockmayer relation for f = 3 [eq. (411 are in agreement, if a, = 
0.5 (theta solvent) and b = 1.5 (the theoretical value of Flory) with atb about 0.8 
for trifunctionally branched PC samples. 

The multimethod procedure has been used for branched polydisperse PC; it 
can, however, be applied for any other polymer. It has been proved for randomly 
tetrafunctionally branched PS (see the Appendix). Thus, eq. (28) and the 
theoretical Zimm-Stockmayer relation for f = 4, eq. (5), are in agreement, if a, 
= 0.5 (theta solvent) and b = 1.5 (the theoretical value of Flory) with a t b  N 0.6 
for tetrafunctionally branched PS samples. 

The branching exponent b [eq. (3)] obtained from experimental data is 1.24 
and 0.55 for randomly branched PC in chloroform at 25°C and PS in cyclohexane 
a t  34.5OC, respectively. 

APPENDIX: APPLICATION OF MULTIMETHOD PROCEDURE 
FOR CHARACTERIZATION OF BRANCHED POLYDISPERSE 

POLYSTYRENE 

The described multimethod procedure can be applied to randomly branched polydisperse poly- 
styrene (PS), and the recently published results of Masuda et al.13 are used for this purpose. Their 
three PS samples were tetrafunctionally branched with divinylbenzene and then were fractionated. 
Thus 21 fractions of narrow MWD were characterized by the average molecular weights a,, and mu, 
the intrinsic viscosity [q] in cyclohexane at  34.5"C, the molecular weight between branch points mseg, 
and the ratio mumseg. The values of Rseg were estimated for the unfractionated samples from 
the kinetics of copolymerization and considered as constant for thereafter obtained fra~t i0ns.I~ 
However, this last assumption seems to be disputable. 

Taking the experimental data of Masuda et al.I3 into account, the other parameters of molecular 
characteristics have been calculated (Table IV). They are listed below. 

1. The polydispersity degree q = M,,,/M,,. For all samples we have 1 5 q < 1.64. 
2. The branching degree G from eq. ( l l a )  written as 

_ _  

G = [ q ] b r / A , R ~ ' ~ p r  (31) 

where G is defined by eq. ( l ) ,  A, = 7.90 X cm3/g and a, = 0.5 (theta solvent) for linear PS in 
cyclohexane at  34°C.7J4 It is assumed that the MWD of considered PS samples can be approximated 
by the log-normal MWD, since the values of q are below 2.7 Hence asp,, = 0.375 and aspw = -0.125. 
Thus i t  is observed that samples considered by Masuda et  al.13 as linear are in fact branched (see 
Table IV). Only RB 17410 can be considered as linear. 

3. The branching degree g, from eq. (9) with a, = 0.5. 
4. The number average number of chain ends G,, from eq. (19) for f = 4. Having the values of 

con, the exponent a t b  is obtained from eq. (17). The correlation of G,, vs. g, for an samples is not 
strong ( r2  = 0.87), and the constant term is 1.6 instead of 2. However, for 12 PS samples (denoted 
by in Table IV), = 1.19 is obtained with r2 = 0.99 and the constant term equal to 1.8, i.e., only 
by 10% lower than 2 [cf. eq. (17)]. The values of G,, are corrected usingg, and atb = 1.19 [eq. (17)]. 
Then, the number average number of branch points per molecule Fib,, is calculated (results are not 
included in to Table IV), as well as corrected values of nn,seg from eq. (19) (see Table IV). I t  seems 

- 
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Fig. 4. Weight average number of branch points Zbw vs. weight average molecular weight B,,,. 
Randomly branched PS samples of Masuda et  al.13: (0) RB 46; (A) RB 93; (0) RB 174. 

to be reasonable that gseg for unfractionated sample is differentiated in polymer fractions. I t  is 
also seen that the authors' value of Mseg for unfractionated RB93 sampleI3 seems to be overed.- 
mated. 

Then, taking mn,seg = ?$w,seg (it is valid for statistically equal segments and can easily be proved), 
the weight average number of branch points per molecule &,, is calculated via eqs. (18) and (19) for 
f = 4. The dependence of zb, on Bw, shown in Fig. 4, is approximately linear in logarithmic coor- 
dinates for primary RB46, RB93, and RB174 samples, respectively. Thus we have 

f ib ,  = AM:' (32) 

Equations (32) and (20) are identical, if a1 = 1 and A = A. I t  is suggested that both equations arc 
valid for monodisperse samples, while for polydisperse samples the relation of &, vs. nw depends 
onMWD. Hence 

Fibw = ARE1;'9a2 (33) 

Coefficients of regression equations for primary PS samples are shown in Table V. Therefore, we 
have A = X as the constant value for monodisperse species, a1 = 1 and a2 = 1.7 for each sample, ex. 
cluding RB93 (e.g., experimental errors in det,ermination of [q] or disturbances in conditions OF 
branching reactions should be considered for RB93 sample). 

5. The number average branching degree En from eq. (3) or from eqs. (21) or (28), as well as the 
weight average branching degree& from eq. (28). The exponent b is obtained from eq. (14) applied 
for polymer ~ o l u t i o n . ~  Values of qo of 50% PS solution in chlorinated diphenyl KC-5 at  50°C are 
taken from Figure 4 in Ref. 13. The concentration term is constant, as well as the temperature factor, 
and both are included in the constant A,,, [eq. (14)]. Hence b = 0.55 and then k =_ -0.76 are obtained. 
The value of b = 0.55 agrees with b = 0.6 reported earlier by Kurata et al.I5 for randomly branched 
PS. 

6. The ratios of Et,,/Tibn and gW/& (Table IV). For all Ps fractions of narrow MWD, &,,/iib,, 

> 1 and Ew/gn < 1 are observed. I t  means that nbr vs. M, is an increasing function for each frac. 
tion. 

7. The branching frequency A, from eq. (20). The branching frequency A, of fractions vs. nu, 
is not constant (see Fig. 5). I t  is increasing or decreasing due to differences in MWD and branch 
points distributions. Similar influence has recently been illustrated for polyethylene16 and for co- 
p o l y m e r ~ , ~ ~  and it is not an unexpected result as some authors ~0ns ide r . l~  If we compare eqs. (20) 
and (33), we obtain 

X, = Aqaz (34) 
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a 
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Fig. 5. Branching frequency A, vs. weight average molecular weight M,. Symbols are as in 
Figure 4. 

The experimental results of Masuda et al.13 are consistent with eq. (34) (see Fig. 6 and Table V). 
The relation (28) for f = 4 is compared with the theoretical one of Zimm and Stockmayer,' eq. (5) 

(see Fig. 7 ) .  Again it is evident that both equations can be represented by similar curves, if k = -0.55, 
i.e., for a, = 0.5 (theta solvent), b = 1.5 (the theoretical value of Flory), and U t b  = 0.6. 

Calculation of Weight Average Branching Parameters 

Number average branching parameters are available from experiments on T g ,  eqs. (16)-(20).8 
Then weight average branching parameters, needed for complete characterization of branched 
polymers, can be obtained, if f ibw is calculated. 

1 1.2 1.4 . 1 
P 

6 

_ -  
Fig. 6. Branching frequency A, vs. polydispersity degree q = M,,,/M,,. Symbols are as in 

Figure 4. 
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Fig. 7. Average branching degree vs. average number of branch points @,x. Randomly branched 
Ps samples of Masuda et  di3: ( 0 )  En = f ( f i b n ) ;  ( 0 )  gw = f ( i&) according to eq. (28) for f = 4 with 
k = -0.76. (--) Experimental data on PS in cyclohexane at  34.5"C, gx = f ( & r ) ;  (- - -) the the- 
oretical Zimm-Stockmayer equation, gw = f ( & , w ) ,  for / = 4. 

Therefore, the ratio i ibw/& can be calculated from eq. (19) transformed into the following 
form: 

Hence, assuming m,,,,, = mw,seg (it is valid for a statistically equal segment length), we obtain 

(36) 

where s = msegmn is available from T, measurements [eqs. (16)-(19)]. Also from eq. (19) or (35) 
we have another equivalent relation: 

- 
n b w / f i b n  = ( 4  - S ) / ( l  - S) 

1 
(37) 

- 
nbw,f  = - Is[(f - l)fibn,f + 11 - 1) 

f - 1  

Branching Frequency 

Branching frequency A,, i.e., the average number of branch points per average molecular weight 
is defined by eq. (20): 

A x  = T b x m x  (20) 

For weight average parameters we have eq. (34) written as 

A, = A w q a Z w  (38) 

By combination of eqs. (20) and (38) we obtain 

A, = A n q a 2 n  (39) 

where 

and 
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