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Synopsis

The multimethod procedure for characterization of branched polydisperse polymers, including
gel permeation chromatography, solution viscometry, melt viscometry, and differential scanning
calorimetry, is described. An equation relating the average branching degree g, and the average
number of branch points 75, has been derived and compared with the theoretical Zimm-Stockmayer
equation. It has been found that both equations can be consistent for theta solvent and for the
branching degree exponent b = 1.5, Experimental data are given for trifunctionally branched bis-
phenol A polycarbonate.

INTRODUCTION

Since the theoretical work of Zimm and Stockmayer,! the influence of long
chain branching (LLCB) on polymer properties has been considered by many
authors, both from theoretical and experimental points of view (for references
see reviews and some recent works2-6). Experimental characteristics of branched
polymer should contain the determination of molecular weight (M) or M averages
(M,), molecular weight distribution (MWD), and parameters of branched
structure such as the type of branching (star, comb, or random), the branch point
(or branch unit) functionality f, the number of branch points per molecule n;,
the distribution of branch points, etc. Commonly used branching degrees

G = [1loe/[7]1in (1)

or
g =ri/ri, (@)

where [7] is the intrinsic viscosity, 72 is the mean square end-to-end distance of
macromolecule, and subscripts br and lin denote branched and linear polymers,
respectively, give only a very general indication of the amount of branched
species. The two branching degrees (G and g are related by

G=gb (3)

where the branching degree exponent b depends above all on the type of
branching and varies from 0.5 to 1.5 (cf. Refs. 2 and 3). Some characteristics,
e.g., type of branching and functionality f, can be deduced from conditions of
branching reactions.

Theoretical equations, relating the branching degree g and the number of
branch points n;, were derived by Zimm and Stockmayer! for randomly branched
monodisperse and polydisperse polymers. Thus for polydisperse polymers and
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where g7, is the weight average value of g for the branch point functionality f
and 71y, is the weight average number of branch points per molecule. Thus 7y,
values should be known for experimental verification of eqs. (4) and (5).

Recently, the following general equation for polymer propertles dependent
on their molecular characteristics was proposed’:

P=Ap [T v® )
i=1
where P is the polymer property, 7 is the product symbol, v; is the ith variable
of molecular characteristics, such as M and measures of MWD and LCB, and
Ap and q;p are constants. Equation (1) offers a method for experimental char-
acterization of branched polydisperse polymers. For example, the values of
number average number of branch points 7, can be determined from glass
transition temperature measurements.8
In the present work (presented in part at the Annual Meeting of Polish
Chemical Society, Lublin, September 22-25, 1982) the multimethod procedure,
including gel permeation chromatography (GPC), solution viscometry (VIS),
melt viscometry, and differential scanning calorimetry (DSC), is described. The
results are compared with the theoretical Zimm-Stockmayer equation. Ran-
domly branched bisphenol A polycarbonate (PC) with trlfunctlonal branch points
is used as an example.

MULTIMETHOD PROCEDURE

The multimethod procedure is based on the general equation, (6), which is
applied for selected polymer properties dependent on M, MWD, and LCB.
Several samples of branched polydisperse polymer are characterized by GPC
and VIS methods. Thus the averages of M, M,,, M,,, M, gpc and M, vis are
obtained. The polydispersity degree

q= Mw/Mn (7
and the branching degree
8 =M, cpc/M, vis (8)

are used as measures of MWD and LCB, respectively.”-12 The branching degree
&, is related to the other branching degrees by the following equation?-10:

G=g,% 9
where a; is the exponent of the Mark-Houwink equation

[n] = KMo (10)
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The GPC system should be properly calibrated in order to obtain g, = 1 for linear
and g, > 1 for branched polymers.

Polymer properties, measured and then treated according to eq. (6) to obtain
constants Ap and a;p by the least-squares four-variable regression method, are
specified below.

1. Intrinsic viscosity [n] for checking the reliability of molecular character-
istics72-11;

[n] = AsMSqsrmg e (11)
where indices s, x, p, and b denote the intrinsic viscosity as the polymer solution

property, the type of M average, polydispersity, and branching, respectively.
The branching degree G can be used in eq. (11) instead of g, and then

[17] = ASM‘;Sqasprasb (113)

where the branching exponent az, = 1 for G.

If GPC and VIS meéasurements of M, MWD, and LLCB are correct, the con-
stants of the Mark—-Houwink equation K = A; and a, for a given polymer-solvent
system should be obtained by the least-squares method. Moreover, the following
conditions should be satisfied”:

aspn > 0 (12a)
Aspy = 0 (12b)
Aspw < 0 (12¢)

for the polydispersity exponent a,p., and
asp = —as; forg, (13a)
or
asp =1 forG (13b)

Then the other polymer properties can be measured.
2. Zero shear rate melt viscosity 7y as the melt property”!%

Mo = A M3mqompsGomb (14)

where subscript m denotes the melt property and G is used as the measure of
LCB. Then the exponent b of eq. (3) can be obtained from eq. (14) as the fol-
lowing ratio”:

b= an/ams (15)
3. Glass transition temperature T, and ATy = Ty — Tg,, where Ty is the

value of Ty at M = =, and the subscript 0 denotes T; values at zero heating rate,
treated by the following general equation:

AT, = Ai(M, + Bgregitt)oq ogit (16)
where the subscript t denotes AT, as the polymer property, B is the correction
for M, and a; = —1.78% Thus, the number average number of chain ends per

macromolecule &@,, can be calculated?:

w, = 2g5% (17)
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Hence, the other LCB parameters are found, i.e., the number average number
of branch points per molecule 7, the average M,, of segments between branch
points M, s, and the average number of branch points per average M (the
branching frequency) A, according to the following relations:

Mbe s = (@x — 2)/(f — 2) (18)
My o5 = M, | [;—:% (@ -2 +1 (19)
Ar = Mpe/M; (20)
Thus, for f = 3 we have
' Plons = @p — 2 (18a)
M, seg = Mo /(2Rbn 3 + 1) (19a)
and forf =4
Mpna = (@/2) — 1 (18b)
M, see = My /(8Tibn,0 + 1) (19b)
Therefore, combining egs. (3), (9), (17), and (18), we obtain
Bin = [Chf — DAtpns + 1]* (21)

where gy, is the number average value of g for the branch points functionality
f, and

k = —a,/bay (22)
and b = a,,/a,,, according to eq. (15). Hence, for f = 3 we have
8sn = (Yoltpn,g + 1)% (23a)
and forf = 4
Bin = (Mpna + 1)* (23b)
Combining egs. (18) and (21), we obtain
En = (i, )* (24)

independently of branch points functionality f, and introducing eq. (17) into eq.
(24), we have

B =g, (25)

Therefore, the essential parameter for determination of branching degree g is
the number of chain ends per molecule @, irrespective of branch points func-
tionality f. Values of @, are obtained experimentally from T; measurements,?
and eqs.(21)—(23) can be compared with the theoretical Zimm-Stockmayer
equations (4) and (5).

EXPERIMENTAL

Samples of randomly branched polydisperse bisphenol A polycarbonate (PC)
were laboratory prepared by interfacial polycondensation, using 2,4-bis(p-
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hydroxycumyl)phenol (BPX) and phloroglucinol (THB) as trifunctional
branching agents.1® Commercial PC samples of Lexan (General Electric Co.),
Makrolon (Bayer AG), and Bistan (Zachem, Poland), some of them supposed
to be branched, were used for comparison.

PC samples were characterized by GPC and VIS methods?1° and their [7], 5o,
and Ty were measured.®1012 The following constants were found: a; =
0.82,79-11 b = 1.31,'%and as, = 0.51.8 Hence, the exponent & [eq. (22)] is equal
to —1.23.

RESULTS AND DISCUSSION

Results of molecular characteristics of PC samples are given in Table I. The
results were checked by eq. (11a), using the measured values of [7], not included
in Table I. The following coefficients were obtained: A; =1.31 X 10~2 cm3/g,
as = 0.812, aspn, = 0.756, asp, = —0.037, and ay, = 1.05 for G.  The values of A
and a, agree with the Mark—-Houwink constants K = 1.20 X 10~2 ¢m3/g and a,
= (0.820 for PC in CHCl5.719 The conditions of reliability, egs. (12a), (12¢), and
(13b), are also satisfied. Nevertheless, the values of G were corrected”; however,
only small differences between uncorrected and corrected values are observed
for higher branch contents (i.e., for lower G values) (see Table I). Then the
values of g, and 7, for f = 3 (the subscript 3 is omitted) were calculated (see
Table I) and statistically treated according to eq. (23a). Hence, k = —1.30 with
correlation coefficient r2 = 0.997 was obtained. This value of & is by 5.7% lower
than that calculated from eq. (22). Hence b = 1.24. The calculated curve g,
= f(71p) and the experimental points are shown in Figure 1. Thus, the experi-
mental points for all samples, irrespective of the method of preparation and the
type of branching agent, belong to the same curve.

The experimental curve for PC is also compared with the theoretical one of
Zimm and Stockmayer given by eq. (4) (see Fig. 1). The difference is evident,
and we have found it necessary to consider some simple models in order to
comment on such a discrepancy.

Therefore, hypothetical PC samples composed of three to six fractions of
branched macromolecules with a given number of branch points n,; were used
for calculations of branching parameters. Values of 7y, and 7, were obtained
from

Mon = 2 XniMbi (26a)
and
Mbw = 2 Xuwilbi (26b)
where ny,; is the number of branch points per ith molecule, x,; and x,,; are the
number and weight fractions, respectively, of the ith molecules. Values of g;
for the ith fractions were calculated from the number of chain ends ©, using eq.
(24) with k = —1.30, and then the number and weight averages of g were obtained
from
8n = 2 Xni8i (27a)
and

8w = 2 Xuwil; (27b)
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Fig. 1. Average branching degree g, vs. average number of branch points fiz,. Laboratory PC
samples: (0) BPX-branched; (®) THB-branched. Commercial PC samples: (©) Bistan; (X) Lexan;
(+) Makrolon. (——) Experimental data on PC in chloroform at 25°C, g, = f(f,); (- —-) the
theoretical Zimm-Stockmayer equation, g, = f(7s), for f = 3.

The results of preliminary calculations are shown in Table II and in Figure 2.
It is evident that the points for g, = f(7,,) and for g, = f(7s,,) are placed along
the same common curve. It means that both relationships for g, and for g,
should be of the same mathematical form and can be written as g, = f(7fs,).
Therefore, according to eq. (21), we obtain the following generalized form of g,
— T, relationship

Brx = [(Yof — Diteye s+ 1]% (28)
Hence, for f = 3 we have
Z3.x = (oTipe 3 + 1)* (29)
Then the following regression equation was considered:
Be = C(Yahpy + 1)* (30)

where the constant C should be equal to unity. The results of calculations for
both g, and g, functions are: C =1.07and k = —1.30 withr?2 = 0.972. Samples
with a quasi-log-normal MWD (see Table II) are even better correlated: C =
1.04 and k = —1.27 with r2 = 0.995 for both g, and g,, functions. Curves of dif-
ferent k values can, however, be distinguished (see Fig. 2). Then it can be sug-
gested that the theoretical Zimm-Stockmayer relation [eq. (4)] is approximated
by eq. (29) with & between —0.45 and —0.40 (see Fig. 2). It correspondstoa; =
0.5 (theta solvent), b = 1.5 (the theoretical value of Flory; c¢f. Refs. 2 and 3), and
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Fig. 2. Average branching degree g, vs. average number of branch points 73, from model calcu-
lations: (O) &, = (@/2)* with k = —1.30; (0,®) E» = Zx.g;; (B,8) B, = Zx,;8;. Pointed in and
crossed data are for increasing and quasi-log-normal molecular weight distributions, respectively.

as =~ 0.8. Infact, the unperturbed macromolecule coil (i.e., theta conditions)
and the statistics of Flory (which gives G = g1% &y,,/®);,, where P is the universal
constant) were assumed by Zimm and Stockmayer.! Therefore, the influence
of solvent is responsible for the observed difference between eqgs. (4) and (23a)
in Figure 1.

For distinguishing between g,, and g, functions given by eq. (28), the ratios
Zw/Bn OF iy /Tepn should be known. It may be expected that the both ratios de-
pend not only on the MWD, i.e., x,,; = f(M;), but also on the branch points dis-
tribution, i.e., x,; = f(ns;), and above all on the relation ny; = f(M;). Thus the
ratios Z,,/8, and ny, /My, are equal to unity for monodisperse branch points, i.e.,
for ny; = const, or they are near unity for samples with branched molecules of
medium M. If the branch points are connected with molecules of high M, the
ratio g,,/g, is lower, and the ratio 7y, /75, is higher than unity; and vice versa,
Zw/8n 1s higher and 7y, /Ty, is lower than unity for branched low-M species (Table
II). These results, based on simple model calculations, seem to be reasonable;
they should, however, be confirmed by more complex model calculations and/or
by other experimental data, especially on weight average branching parameters.
Fortunately, experimental data on randomly branched polystyrene (PS) have
quite recently been reported.!® We have treated these data according to the
multimethod procedure, and the results consistent with those from simple model
calculations have been obtained (see the Appendix).

Similarly, the weight average branching parameters can be calculated for PC
samples, using equations derived in the Appendix (see Table III). Thus, the
ratio Ny /My, higher than unity and the ratio g,,/g,, lower than unity are obtained,
i.e., the relation of ny; vs. M; is an increasing function for all PC samples.

The branching frequencies A, and A,, are shown in Table III and in Figure 3,
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TABLE III
Weight Average branching Parameters of PC Samples

Sample Mseg X 1073 My ﬁbw/ﬁbn gwb gw/gn >\w X 10~6¢
DE-2 11.1 1.43 14.3 0.50 0.53 33.6
DE-3 8.8 1.87 8.5 0.42 0.48 44.3
DE-4 9.3 2.07 10.9 0.40 0.45 43.9
DE-5 12.0 1.20 17.1 0.54 0.56 29.6
DE-7 5.5 5.39 5.3 0.18 0.25 84.6
DE-8 10.3 2.40 10.0 0.36 0.42 40.5
DE-12 10.6 0.97 8.1 0.60 0.65 304
DE-13 10.6 2.00 7.1 0.41 0.49 38.0
DE-15 21.0 0.85 9.4 0.63 0.66 14.7
DE-17 18.4 0.90 11.3 0.62 0.65 17.3
DE-M 17.7 0.74 12.3 0.66 0.69 17.0
Bistan

AW 3/76 6.2 2.98 15.7 0.31 0.35 68.2

AE 23/76 21.9 0.78 9.8 0.65 0.68 14.1

AF 21.6 1.28 8.0 0.53 0.58 16.6

M-10 10.8 1.07 17.8 0.57 0.59 31.6
Lexan 151 8.2 2.18 21.8 0.38 0.40 50.9
Makrofol E 9.6 2.14 10.2 0.39 0.44 42.4

2 From eq. (36), equivalent results are obtained from eq. (37).
b From eq. (29) with & = —1.30.
¢ From eq. (30).

respectively. Both relations given by egs. (38) and (39) in the Appendix are
found to be satisfied. Neglecting a different origin of branched PC samples, 4,,
=5 X 107 and as, = 2.50 are obtained from eq. (39) with correlation coefficient
r2 =0.77. The exponent as, calculated from eqs. (38) and (41) is equal to 2.78.
The results for BPX-branched laboratory and commercial PC samples are better
correlated: A, =3 X 1077 and a4, = 2.90 with correlation coefficient r? = 0.87
are calculated from eq. (39) and as, = 2.93 from eqs. (38) and (41).

4

i0

An

10754

-
o
-

q

Fig. 3. Branching frequency A, vs. polydispersity degree g. Laboratory PC samples: (O)
BPX-branched; (®) THB-branched. Commercial PC samples: (®) Bistan; (X) Lexan; (+) Mak-
rolon. (——) All PC samples with correlation coefficient r2 = 0.77; (- - -) BPX-branched PC samples
with correlation coefficient r2 = 0.87.
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CONCLUSIONS

The multimethod procedure, based on GPC, VIS, melt viscometry, and DSC
methods, enables the improved characterization of branched polydisperse
polymers. Itissuggested that the relationship, derived for g, = f(7p,) [eq. (21)]
and checked for trifunctionally branched PC, is valid also for g, = f(7ipy, ), and
can be generalized as g, = f(7s.) [eq. (28)].

Comparison of results on PC and the theoretical equation for f = 3 suggests
that the influence of solvents on the measurement of the branching degree g
should be taken into account by means of eq. (28). Thus, eq. (28) and the the-
oretical Zimm-Stockmayer relation for f = 3 [eq. (4)] are in agreement, if a; =
0.5 (theta solvent) and b = 1.5 (the theoretical value of Flory) with a;; about 0.8
for trifunctionally branched PC samples.

The multimethod procedure has been used for branched polydisperse PC; it
can, however, be applied for any other polymer. It has been proved for randomly
tetrafunctionally branched PS (see the Appendix). Thus, eq. (28) and the
theoretical Zimm-Stockmayer relation for f = 4, eq. (5), are in agreement, if a;
= (.5 (theta solvent) and b = 1.5 (the theoretical value of Flory) with a,;, ~ 0.6
for tetrafunctionally branched PS samples.

The branching exponent b [eq. (3)] obtained from experimental data is 1.24
and 0.55 for randomly branched PC in chloroform at 25°C and PS in cyclohexane
at 34.5°C, respectively.

APPENDIX: APPLICATION OF MULTIMETHOD PROCEDURE
FOR CHARACTERIZATION OF BRANCHED POLYDISPERSE
POLYSTYRENE

The described multimethod procedure can be applied to randomly branched polydisperse poly-
styrene (PS), and the recently published results of Masuda et al.!3 are used for this purpose. Their
three PS samples were tetrafunctionally branched with divinylbenzene and then were fractionated.
Thus 21 fractions of narrow MWD were characterized by the average molecular weights M,, and M,,,
the intrinsic viscosity [1] in cyclohexane at 34.5°C, the molecular weight between branch points M,
and the ratio M,,/Me,. The values of M, were estimated for the unfractionated samples from
the kinetics of copolymerization and considered as constant for thereafter obtained fractions.!?
However, this last assumption seems to be disputable.

Taking the experimental data of Masuda et al.!3 into account, the other parameters of molecular
characteristics have been calculated (Table IV). They are listed below.

1. The polydispersity degree ¢ = M,,/M,,. For all samples we have 1 < ¢ < 1.64.

2. The branching degree G from eq. (11a) written as

G= [ﬂ]br/AsA_’Igsqas’” (31)

where G is defined by eq. (1), A; = 7.90 X 1072 cm3/g and a; = 0.5 (theta solvent) for linear PS in
cyclohexane at 34°C.714 It is assumed that the MWD of considered PS samples can be approximated
by the log-normal MWD, since the values of g are below 2.7 Hence a;pn = 0.375 and asp,, = —0.125.
Thus it is observed that samples considered by Masuda et al.!3 as linear are in fact branched (see
Table IV). Only RB 17410 can be considered as linear.

3. The branching degree g, from eq. (9) with a; = 0.5.

4. The number average number of chain ends @, from eq. (19) for f = 4. Having the values of
@n, the exponent a; is obtained from eq. (17). The correlation of @, vs. g, for all samples is not
strong (r2 = 0.87), and the constant term is 1.6 instead of 2. However, for 12 PS samples (denoted
by ? in Table 1V), a;», = 1.19 is obtained with r2 = 0.99 and the constant term equal to 1.8, i.e., only
by 10% lower than 2 [cf. eq. (17)]. The values of @, are corrected using g, and a;» = 1.19 [eq. (17)].
Then, the number average number of branch points per molecule 7y, is calculated (results are not
included in to Table IV), as well as corrected values of M, n.seg from eq. (19) (see Table IV). It seems
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Fig. 4. Weight average number of branch points 7y, vs. weight average molecular weight M..
Randomly branched PS samples of Masuda et al.13: (0) RB 46; (a) RB 93; (D) RB 174.

to be reasonable that A_lseg for unfractionated sample is differentiated in polymer fractions. Itis
also seen that the authors’ value of Mseg for unfractionated RB93 sample!3 seems to be overesti-
mated.

Then, taking M, nseg = ]\_/Iw_Seg (it is valid for statistically equal segments and can easily be proved),
the weight average number of branch points per molecule 7, is calculated via egs. (18) and (19) for
f =4. The dependence of s, on My, shown in Fig. 4, is approximately linear in logarithmic coor-
dinates for primary RB46, RB93, and RB174 samples, respectively. Thus we have

Ppw = AM3! (32)

Equations (32) and (20) are identical, if a; = 1and A = X. It is suggested that both equations are
valid for monodisperse samples, while for polydisperse samples the relation of @,,, vs. M,, depends
on MWD. Hence

fipw = AMtgo? (33)

Coefficients of regression equations for primary PS samples are shown in Table V. Therefore, we
have A = A as the constant value for monodisperse species, a; = 1 and a2 = 1.7 for each sample, ex-
cluding RB93 (e.g., experimental errors in determination of [n] or disturbances in conditions of
branching reactions should be considered for RB93 sample).

5. The number average branching degree g, from eq. (3) or from egs. (21) or (28), as well as the
weight average branching degree g, from eq. (28). The exponent b is obtained from eq. (14) applied
for polymer solution.” Values of ng of 50% PS solution in chlorinated diphenyl KC-5 at 50°C are
taken from Figure 4 in Ref. 13. The concentration term is constant, as well as the temperature factor,
and both are included in the constant 4,, [eq. (14)]. Hence & = 0.55 and then & = —0.76 are obtained.
The value of b = 0.55 agrees with b = 0.6 reported earlier by Kurata et al.1% for randomly branched
PS.

6. The ratios of fip, /My, and Z,,/8, (Table IV). For all PS fractions of narrow MWD, Ty, /Tisn
> 1 and §,,/§.» < 1 are observed. It means that n;; vs. M; is an increasing function for each frac-
tion.

7. The branching frequency A, from eq. (20). The branching frequency A,, of fractions vs. M,
is not constant (see Fig. 5). It is increasing or decreasing due to differences in MWD and branch
points distributions. Similar influence has recently been illustrated for polyethylenel® and for co-
polymers,'” and it is not an unexpected result as some authors consider.!? If we compare egs. (20)
and (33), we obtain

A = Aga2 (34)
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Fig. 5. Branching frequency )\, vs. weight average molecular weight M,. Symbols are as in

Figure 4.

The experimental results of Masuda et al.13 are consistent with eq. (34) (see Fig. 6 and Table V).

The relation (28) for f = 4 is compared with the theoretical one of Zimm and Stockmayer,! eq. (5)
(see Fig. 7). Again it is evident that both equations can be represented by similar curves, if £ ~ —0.55,
i.e., for a, = 0.5 (theta solvent), b = 1.5 (the theoretical value of Flory), and a;» = 0.6.

Calculation of Weight Average Branching Parameters

Number average branching parameters are available from experiments on T, eqs. (16)—(20).8
Then weight average branching parameters, needed for complete characterization of branched
polymers, can be obtained, if 7y, is calculated.

6 ] RB 93 R
—_—R0— =

e — = "o (<} A

A, N RB 46
-]

1074 RB 174

1 1.2 14 1.6

q

Fig. 6.
Figure 4.

Branching frequency A, vs. polydispersity degree ¢ = M,/M,.

Symbols are as in
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Fig. 7. Average branching degree g, vs. average number of branch points 77,. Randomly branched
PS samples of Masuda et al.13: (@) Z, = f(Rp,); (O) B,y = f(Rsw) according to eq. (28) for f = 4 with
k = —0.76. (——) Experimental data on PS in cyclohexane at 34.5°C, &, = f(7s,); (- — -) the the-
oretical Zimm-Stockmayer equation, g, = f(fpw), for f = 4.

Therefore, the ratio Ay, /s, can be calculated from eq. (19) transformed into the following
form:

_ 1 ( ¥ )
Ay = —— |1 (35)
*f f_ 1 Mx,seg
Hence, assuming _,,,seg = _w,seg (it is valid for a statistically equal segment length), we obtain
ﬁbw/ﬁbn = (q - S)/(l - S) (36)

where s = IVIseg/M,, is available from T, measurements [egs. (16)—(19)]. Also from eq. (19) or (35)
we have another equivalent relation:

1
Tbw,f = le {Q[(f - 1)7—1bn,f + 1] -1 (37)
Branching Frequency

Branching frequency A,, i.e., the average number of branch points per average molecular weight
is defined by eq. (20):

Ay = b /M, (20)
For weight average parameters we have eq. (34) written as
A = Apqoew (38)
By combination of egs. {20) and (38) we obtain
An = Ang®n (39)
where
Ap/An = Tpy/Mpn (40)
and
agp =agy, +1 (41)
References
1. B. H. Zimm and W.H. Stockmayer, J. Chem. Phys., 17, 1301 (1949).
2. P. A. Small, Adv. Polym. Sci., 18,1 (1975).



BRANCHED POLYDISPERSE POLYMERS 3121

3. M. Hoffmann, H. Kromer, and R. Kuhn, Polymeranalytik I, Georg Thieme Verlag, Stuttgart,
1977.
. N. G. Kumar, J. Polym. Sci., Macromol. Rev., 15, 255 (1980).
. N. Nakajima and E. R. Harrell, Rubber Chem. Technol., 53, 14 (1980).
. D. E. Axelson and W. C. Knapp, J. Appl. Polym. Sci., 25, 119 (1980).
. Z. Dobkowski, Eur. Polym. J., 17,1131 (1981).
. Z. Dobkowski, Eur. Polym. J., 18, 563 (1982).
. Z. Dobkowski, preprints of short communications presented at [IUPAC Makro Mainz, Mainz,
17-21 September 1979, Vol. 3, p. 1440.
10. Z. Dobkowski and J. Brzezifski, Eur. Polym. J., 17,537 (1981).
11. Z. Dobkowski, Polimery 26, 346 (1981).
12. Z. Dobkowski, Eur. Polym. J., 18, 1051 (1982).
13, T. Masuda, Y. Ohta, and S. Onogi, Polym. Prepr., 23(2), 40 (1982).
14. T. G. Fox and P. J. Flory, J. Am. Chem. Soc., 73, 1915 (1951).
15. M. Kurata, M. Abe, M. Iwama, and M. Matsushima, Polym. J., 3, 729 (1972).
16. D. Lecacheux, J. Lesec, and C. Quivoron, Polym. Prepr., 23(2), 126 (1982).
17. B. L. Neff and J. R. Overton, Polym. Prepr. 23(2), 130 (1982).

Received November 2, 1982
Accepted April 29, 1983

W 0o ~1 0 Ok



